Deep Learning for Multifidelity Aerodynamic Distribution Modeling from Experimental and Simulation Data

نویسندگان

چکیده

Wind-tunnel experiment plays a critical role in the design and development phases of modern aircraft, which is always limited by prohibitive cost. In contrast, numerical simulation, as an important alternative research paradigm, mimics complex flow behaviors but less accurate compared to experiments. This leads recent emerging interest applying data fusion for aerodynamic prediction. particular, prediction aerodynamics with lower computational cost can be achieved fusing experimental (high-fidelity) (low-fidelity) data. Currently, existing works on models using mainly concern integrated data, like lift, drag, etc. this paper, multifidelity model based deep neural network (DNN) developed distribution over wing surface, where both are introduced loss function proper weighting factor balance overall accuracy. The proposed approach illustrated modeling surface pressure ONERA M6 transonic flow, including different scenarios condition varies or small number high-fidelity available. results demonstrate that trained decent low-fidelity few accurately predict wing. outperformance other DNNs single fidelity has been reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

modeling loss data by phase-type distribution

بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...

simulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water

abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...

Data-Driven Fuzzy Modeling Using Deep Learning

Fuzzy modeling has many advantages over the non-fuzzy methods, such as robustness against uncertainties and less sensitivity to the varying dynamics of nonlinear systems. Data-driven fuzzy modeling needs to extract fuzzy rules from the input/output data, and train the fuzzy parameters. This paper takes advantages from deep learning, probability theory, fuzzy modeling, and extreme learning machi...

متن کامل

Aerodynamic Data Modeling Using Support Vector Machines

Aerodynamic data modeling plays an important role in aerospace and industrial fluid engineering. Support vector machines (SVMs), as a novel type of learning machine based on statistical learning theory, can be used for regression problems and have been reported to perform well with promising results. The work presented here examines the feasibility of applying SVMs to the aerodynamic modeling f...

متن کامل

Nitrogen management strategies for maize production systems: Experimental data and crop modeling

Maize (Zea mays L.) is an important crop among Brazilian smallholder farmers,who are also responsible for 40% of the poultry and egg production in the country.Although poultry litter is considered a potential pollutant, if properly stabilized anddistributed in the field it can be used as a source of nitrogen for maize production.In this study, the response of maize to mineral fertilizer and pou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AIAA Journal

سال: 2022

ISSN: ['0001-1452', '1533-385X', '1081-0102']

DOI: https://doi.org/10.2514/1.j061330